数学函数心得体会(汇编29篇)

2025-04-21 21:25 心得体会

数学函数心得体会(精选29篇)

数学函数心得体会 篇1

有效教学是一线教师普遍关注的战略性问题。随着新一轮基础教育课程改革的不断深入,新《课标》教材的实施,特别是有效教学的不断尝试和实践,对教师的专业素养提出了更高要求,实践经验告诉我们,教师的专业素养的高低直接影响到有效教学的质量。我的学习后的体会如下:

1、要清晰了解数学教材呈现的知识结构。作为一名小学数学教师,至少要对小学六年所有的数学知识以及每一年级学生要达到怎样的水平有清晰的了解。只有这样,我们才能不仅仅局限在自己经常任教的那一个或几个年级,而能用发展的眼光看待自己的教学,为学生的进一步学习打下扎实的基础。而且,只有对所教的学科知识体系有了深入的了解,才能设身处地地用学生的眼光看待教材,使自己的教学真正切合学生的实际需要,促进学生的有效发展。

2、要广泛地阅读小学数学教育教学书刊。读书是提高人素养的一个重要方法,作为一名新形势下的小学数学教师应该多搜集和阅读有关的小学数学教育教学方面的书刊。如“课程论”、“小学数学教学论”、“小学教育论”、“小学数学教育”、“小学数学教师”等广大教师会有很大帮助的。也许我们会觉得有的专业知识离我们太远,看不懂或听不懂。其实,看得多了自然也就理解了。所以,就应该积极主动地去探索未知的知识。

3、要研究一些“教学案例”。案例是一种理论与实践,培养研究者反思案例是和团队合作能力的研究方法,普通性重于特殊性之中,并通过特殊性表现出来的。案例具有典型性和具体意义。通过对一些案例的分析,可以提高了我的教学能力。所以请教师们要留意教学案例,研究教学案例。

4、要积极参加各科培训活动。职前教育是我们教育教学的重要基础,但我们要不断的'学习,特别是参加培养学习。对于培训机构或者是学科开展的一些培训活动。如新课程培训、校本研究培训、网络研究培训、教材培训等,以提升我们的专业素养。

数学函数心得体会 篇2

我不知道人们为什么长久以来称数学为“科学的女皇”,也许是女皇有着一种让人无法亲近的神秘感,但是她的面容又是如此的让人们向往和陶醉。女皇陛下,揭开你神秘的面纱,让我目睹你绝世的风姿,体会你无尽的风韵,感动你带给我所有的感动吧!

仰望者,唯巨星也!数学的漫漫长河中,涌出过无数的璀璨巨星,从毕达哥拉斯、欧几里德得、祖冲之到牛顿、欧拉、高斯、庞加莱、希尔伯特……当他们一个个从我的心底流过时,有一种兴奋,更有一种感动,他们才是时代真正的弄潮儿。

欧几里得的《几何原本》开创了数学最早的典范,是漫漫长河中的第一座丰碑,公理化的思想由此而生;

祖冲之关于圆周率的密率(355/113)给了国人足够骄傲的资本,也把“割圆术”发挥到了极致;

牛顿和莱布尼兹联手创造了微积分(尽管他们之间有这样那样的矛盾),开创了数学的分析时代,微积分也被誉为“人类精神的最高胜利”(恩格斯语);历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。

一个多世纪前的1900年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。正是这23个数学问题,引领了整个二十世纪数学发展的主流。

1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达300年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。

就这样一次次的被感动,不仅为成功者喜悦感动,也为不被承认的成功者默默感动。

天才往往是孤独的,先知者注定得不到世人的理解。

许多天才的数学家,英年早逝,终生难以得志。

椭圆函数论的创始人阿贝尔一生贫病交加,大学毕业长期找不到工作,在他仅仅27年的短暂生命中,却留下许多创造性的贡献。但当人们认识到他的才华,柏林大学终身教授的聘书下达时,他已经离开人世两年了。

同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。

集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。

……

天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?

在那漫漫长河中,璀璨巨星令我欣然神往,惊涛骇浪更令我心潮澎湃。三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势,海洋般伟岸的身姿。

每一次危机巨浪之后,纳百川,聚众流,数学以更加广阔的胸怀滚滚向前,尽管这其中有很多悲壮的成分。

第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。

第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。

第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

滚滚巨流,势无可挡,数学的长河竟拥有如此的悲壮和激情,那种“山穷水尽疑无路,柳暗花明又一村”的成长能不被感动吗?

数学函数心得体会 篇3

通过学习,我接触到了专家学者们的教育新理念,学习了不少优秀教师的课堂教学设计,同时还与学校的教师们进行了充分的交流。收获颇多,感触较深的同时,也认识到了自己教学底蕴的不足,因此,可以说这次学习来的很及时,效果将影响深远。作为教师的我深深感到学习的重要性,在今后的教学中,我将立足于自己的本职工作,加强理论学习,转变教育教学观念,积极实践新课改,铺设好自己的专业化发展之路。我在这次学习中收获很多,盘点收获主要有以下三方面:

一、了解知识体系因材施教

系统了解知识体系主要是指:各知识点在整个知识体系中的地位、作用以及彼此间的内在联系,认真探讨内在联系我们知道:数学教材和其他各科相比,具有相对稳定性,几年如一日(使用同一版本)的现象可以说是司空见惯。这为我们更好地探讨教材与教材、章与章、节与节、知识点与知识点之间的内在联系,提供了极为有利的条件。没有联系就没有数学,缜密的数学体系,有着其他任何学科都无法比拟的内在联系:公式、法则的推导,定理、公理的引入,数与形的结合,立体感的建立等等无一不是普遍联系的经典之作。

不同能力的培养往往须要用不同的方法。因此,我们在传授知识之前,一定要将能力要求加以明确,做到有所侧重、有的放矢。全面实施因材施教方略每个学生有每个学生的特点,想用一个教案来将所有的学生"九九归一",显然是不切实际的。教案必须面向全体学生,这就要求教案内容应具有相当的"梯度"。这种"梯度"要能让基础好的学生"吃不了,兜着走"--给他们留一些有思考性的问题,以作为课堂内容的延续;让基础相对差一点的学生"吃得香,不肯走"

让他们在简单的题目里,找回自信心,拥有成就感。能否"因材施教"是检查教师驾驭课堂能力大小、教学水平高低的重要方面,也是能否备好数学课的前提条件。

二、良好的'师生关系是学好数学的前提

首先,教师要尊重、关心、信任学生。尊重、关心、信任学生,和学生友好相处是营造和谐课堂氛围的基础,在教学活动中,教师与学生在心理上形成一种稳定,持续的关系,不仅是在知识、能力上的交往,也是情感心灵上的沟通、交流,首要的是教师要对学生关心、信任、尊重。

其次,立足课堂,在实践中提升自身价值。课堂是教师体现自身价值的主阵地,我本着“一切为了学生,为了学生的一切”的理念,我将自己的爱全身心地融入到学生中。今后的教学中,我将努力将所学的新课程理念应用到课堂教学实践中,立足“用活新老教材,实践新念。”力求让我的数学教学更具特色,形成独具风格的教学模式,更好地体现素质教育的要求,提高数学教学质量。同时作为班主任的我深深懂得,教师的一言一行都影响着学生,都会对学生起着言传身教的作用。思想教育要常抓不懈,着重培养学生良好的道德品质、学习习惯、劳动习惯和文明行为习惯等。

另外注重引导学生自学思考。“自学”,即学生自己看书、理解教材,教师指导学习的方法;找出重点划下来,发现疑问做标记。古人云,学起于思,思源于疑。让学生看书思考,不仅给了学生思考的时间和空间,为下一步教学打下良好的基础,而且可以使学生养成勤思善学的良好学习习惯。注意让学生在“做数学”中进行数学探究并发展思维能力。制造教学疑问,引发学生开展研讨和争论。

①注重引导学生开展小组内交流、质疑、解疑。在学生自学的基础上,小组内交流划出的重点,互相质疑、解疑,把没有解决的问题记下来。在这个过程中,由于每个人都要阐述自己的观点与看法,能充分调动和发挥学生参与教学的积极性、主动性,带动学困生,起到交流互补的作用,能激发深人钻研的意向。同时这样做,又能培养学生的团结协作精神。

②积极开展小组间质疑解疑。首先,由学生把小组内没有解决的问题板书到黑板上,并由学生按课本内容先后编上序号。心理学研究表明,学生都有很强的表现欲望。让学生上台板书自己的问题,正给了他们表现才能的机会;由学生按课本内容先后编上序号,加深了对教材知识体系的进一步认识。其次,教师组织全班同学共同解决黑板上的问题,形成组间解疑。在此期间,对每一个问题全班同学都可以发表自己的见解,举例说明自己的观点,甚至可以辩论。学生的质疑,以学生解疑为主,教师在教学过程中组织、参与、指导、研究。对学生解决不了的问题,教师或和学生共同研究,或适时加以引导、点拨,但决不可能代替学生思考。

三、用数学,解决生活中的实际问题

学生在学习知识后,不考虑所学数学知识的作用,不应用数学知识去解决现实生活中的实际问题,那么,这样的教学培养出来的学生,只是适应考试的解题能手。学生掌握了某项数学知识后,让他们应用这些知识去解决我们身边的某些实际问题,他们是十分乐意的,这也是我们教学所必须达到的目标。

如:学生在学习了长方形和正方形的周长以后,让学生在自己的照片装饰上精美的边框;学习了长方形和正方形的面积后,让学生回家去帮助父母并计算房间地面面积、计算铺地板砖的数量及购买钱数。这样,既培养了学生的动手能力、预算能力、社会能力,又十分有效地巩固了所

数学函数心得体会 篇4

随着数学学科的发展,三角函数作为一种拓展的数学内容,经常出现在中学高中的课程中。我们在学习和掌握三角函数的过程中,不仅仅是为了应付考试,更重要的是能够理解其背后的数学概念与运用,这不仅对我们的数学素养的培养有益,也对我们的思维能力的培养有着积极的促进作用。通过学习三角函数,我深刻体会到了它的重要性和学习方法的重要性。

首先,三角函数在数学中的价值不可忽视。三角函数既是数学基础知识的重要组成部分,又是解决实际问题的必要工具。在几何学中,三角函数帮助我们求解任意形状的三角形,计算两个角度的关系,并揭示了角度与边的长度之间的关系。在物理学中,三角函数则用于描述波动、震动和周期等现象。而在工程学和建筑学中,则常用于测量和绘制各种形状的图形。因此,学习和掌握三角函数对于我们未来的学习和工作具有重要的帮助和指导作用。

其次,学习三角函数需要注重方法和思维的培养。在我学习三角函数的过程中,我发现最重要的是学会灵活运用各种三角恒等式和公式。在初学阶段,我们要掌握基本的正弦、余弦、正切等函数的定义和意义,并学会如何根据图形和题目中的条件,将其转化为三角函数的表达式以求解问题。同时,要熟练使用和变形三角函数的基本恒等式,如和差、倍角、半角等恒等式,以及特殊角的数值关系。这样可以帮助我们更好地理解和记忆三角函数的概念和性质,并能够灵活运用到具体问题中。

此外,学习三角函数需要注重实践与应用。理论知识只有与实际应用相结合,才能更好地体现其意义和价值。在学习三角函数的过程中,教师往往会利用许多实际问题来引导学生去发现和解决问题。例如,计算角度的方位角,测量物体的高度和距离,以及计算航行和航向等。通过这些实际问题的应用,我们能够更好地理解和掌握三角函数的用途,并将其运用到具体的实践中。这对于我们的'学习动力的提高和思维能力的培养有着积极的促进作用。

最后,在学习三角函数过程中,我也发现了一些困惑和需要解决的问题。例如,在学习三角函数的性质时,我发现很多公式和恒等式是需要记忆的,并且容易混淆。特别是在解决复杂的题目时,容易因为记忆不牢固而无法抓住重点。另外,有些题目在应用上也存在一定的难度,需要我们动脑思考和灵活运用。因此,为了更好地掌握三角函数,我们需要在课后进行系统的练习和复习,并结合课本中的例题和习题进行深入理解。同时,积极参加数学竞赛和数学建模等活动,不断拓宽自己的思维能力和应用能力。

综上所述,在学习三角函数的过程中,我们要重视其重要性和应用价值。同时,掌握方法和思维的培养也是非常关键的。在实践应用和解决问题中,我们才能更好地理解和掌握这门知识。虽然在学习过程中会面临一些困惑和难题,但只要我们保持积极的态度和持续的努力,相信我们终将能够掌握三角函数,并将其成功应用于更广阔的数学领域和实际问题中。

数学函数心得体会 篇5

于丽群老师的关于《幼小衔接的双向奔赴 助力幼儿和美成长》的讲座通过其所在幼儿园的教育理念让家长感受到了和美+课程,在传承与创新中挖掘,弘扬传统文化以艺术润美,融合本土特色于游戏创新的园本特色,确立快乐呵护成长,滋养心灵的办园宗旨,以幼儿为本,满足幼儿兴趣,促进其生长,用可持续发展的眼光将环境创设与幼儿园发展愿景相融合,提炼出了启迪慧美,和谐身心的办园理念,亦在帮助孩子们开启智慧之门,培养孩子们对美的感受力和表现力。老师和孩子们用沙子和各种各样的石头制作了“和美”文化墙展示了和美文化的内涵、精神、灵魂。通过家庭教育专家专题讲座及丰富多彩的家园共育活动引领家长理解和认同园所文化的脉络和底蕴。

边听于老师的讲座我就在想,这不就是我们孩子所在的幼儿园吗?通过开设园本特色课程,满足不同发展能力,不同发展层次,不同个性的孩子的发展,传统文化如围棋、国画等,以传统文化和本土特色沁润孩子的心灵,养成良好的文明修养,根据孩子们的认知水平和发展需求,结合孩子们的兴趣点,孩子们不仅了解了围棋礼仪,心理素质、思考能力都得到不断提升。还感受到了水墨丹青的艺术美,潜移默化中培养了孩子良好的学习品质,以及感受美、变现美、创造美的能力。积极配合幼儿园培养孩子的良好习惯,注重对孩子沟通自信乐观等心理素质的培养,以形成孩子健全的人格。幼小衔接的过程中这些良好的精神养分必定成为孩子尽快适应小学生活的食粮。虽然在幼儿园不教拼音、数学,但是孩子在幼儿园里所获得的对孩子以后的成长有着更深远的影响。人生是场马拉松,与其给孩子报各种班学习更多知识,倒不如抓住学前这个关键期,培养孩子各种能力和习惯,为孩子打好基础,这才是明智之举。

幼小衔接是孩子、家长、老师共同携手循序渐进的积累过程,相信在孩子、老师、家长的努力下,这段丰富多彩的幼儿园时光,将会成为他们童年中一段难忘而有意义的记忆,让孩子带着在幼儿园积攒的力量,满怀信心的步入下一个阶段的学习和生活。

数学函数心得体会 篇6

“问题意识”是指在一定的情境中,善于发现问题,并驱动其运用已有知识积极探究问题的心理状态。爱因斯坦曾经说过:“提出一个问题往往比解决一个问题更重要,因为解决问题也许仅仅是一个教学上或实验上的技能而已。而提出新的问题、新的可能性,从新的角度去看旧的问题,都需要有创造性的想象力,而且标志着科学的真正进步。”问题是数学的心脏,在数学教学中培养学生的“问题意识”,是造就创新型人才的启动器。那么,我们应该如何结合数学学科特点和小学生认知规律培养学生的“问题意识”,提高学生质疑问难能力呢?结合我本人的教学实践,我认为可以从以下几个方面来做:

一、把培养学生问题意识放在教学的首位

陶行知说过:“发现千千万,起点是一问,智者问得巧,愚者问得笨。”培养学生的“问题意识”,就必须把学生推到主体位置。教师要从思想上转变教学观念,改变师生在课堂上的角色。有的老师上课时往往讲得很多,学生只当收音机,对老师讲授的知识全盘接收,发现问题也不敢提,这对于学生的发展是十分不利的。所以老师要从一个知识传授者转变为学生发展的促进者,把课堂还给学生,引导学生在解决问题时,遇到问题要能大胆地提出来,可以和同学充分交流,一个人有一种见解,两个人也许就有两种见解,在互相学习的同时,还能培养学生的合作能力、倾听能力等。教师要能与学生平等交往,正确看待每个学生的提问。教师也要学会倾听,敢于用实事求是的态度面对学生的提问,鼓励学生质疑问难,异想天开,爱护和培养学生的好奇心,引导他们勇于提出各种新奇的数学问题。

二、激活学生的数学问题意识

《新课标》提倡“人人学有价值的数学”。有价值的数学从某种意义上说就是要学有用的数学,学生有了学习欲望,才能投入地学。为此,教师在教学中必须联系生活实际来重组教材。例如:在上《小数乘法》一课时,我选择了超市作为学习的素材。人人都有逛超市的经历,且乐此不疲。可以出示一些图片,如小明买了5盒牛奶,每盒2、8元,一共要花多少钱?或者直接出示几张学生较为熟悉的商品,并贴上价格,让学生逛逛“超市”过把瘾,小组合作,说说你想买几种商品,一共要花多少钱?这样就把教材中缺少生活气息的题材改编成了学生感兴趣的、活生生的题目,使学生积极主动地投入学习生活中,让学生发现数学就在自己身边,从而提高学生用数学思想来解决实际问题的能力。

三、增强学生质疑问难的主动性

鼓励学生质疑问难,是培养学生创新意识的起点。著名物理学家李政道曾经说过:“遇到问题要敢于问个为什么,可怕的是提不出问题,迈不出第一步。”

教学中,教师应从学生的生活经验出发,创设学生熟悉的问题情境,让学生体验到数学问题就在自己身边,就在自己的生活中。如:教学《长方体和正方体的表面积》时,课后习题中有这么一道题:一个领奖台,由2个长方体和1个正方体组成,在这个领奖台的前后面涂上黄色,上面及侧面涂上红色,分别求出涂上这两种颜色的面积(3个的长和宽都相等)。教学时,我先让学生独立思考,然后将自己的想法在小组中交流,汇报时我惊喜地发现出现了多种不同的答案,多种不同的解决方法。对这些方法,我让学生说出自己的观点,再选择你喜欢的方法。结果,有一个同学的做法征服了全班,大家不禁为他鼓掌。在求黄色的面积时,他把3个物体叠起来,这样只需算出前后两个长方形的面积就行了;求红色面积时,他把涂红色的这些面拉直,成为一个长方形,求出它的面积即可。我们不禁要为学生有这样的观点而喝彩,同时也在提醒自己,如果不把课堂给学生,不鼓励学生质疑问难,你能听到如此精彩的回答吗?

四、提高学生的解决问题能力

数学教材中的问题多是经过简单化或数学化了的问题,为了使学生更好的了解数学的思考方法,提高学生分析问题、解决问题的能力,教师必须善于发现和挖掘生活中的`一些具有发散性和趣味性的问题。例如在教学《分解质因数》之后,可以出一道这样的题目:小林、小明、小宇、小军四个人是好邻居,更巧的是他们的年龄是四个连续的自然数,并且乘积是3024,你知道他们的年龄分别是多少吗?这道题目突破了教材的命题方式,提高了命题的趣味性和生活性,学生在思考这类问题的时候,就要能够举一反三,学以致用,提高了解决问题的灵活性。又如:在进行《长方体表面积》教学后,可以出这样一道思考题:小东要把三个长7厘米,宽6厘米,高4厘米的长方体盒子,用包装纸包起来,怎样包装最节约纸?需要多大面积的纸?(粘贴处不计)如果有6个这样的盒子呢?这里要结合生活实际,考虑到包装时有可能出现的几种情况,然后来认真分析,什么时候最浪费,什么时候最节约。这样可以让学生从生活中学,激发学生学习的兴趣,提高解题的技巧,培养学生根据实际情况来解决问题的能力。

在小学数学教学中培养学生的问题意识,是促进学生认知发展和学会学习的有效途径,是培养学生创新意识和初步创新思维能力的重要举措,只有让学生形成强烈的问题意识,才能促使学生主动地、创造性地学习,从而发展学生思维,增强学生能力,提高学生的学习效果。

数学函数心得体会 篇7

在学习了“幼小衔接 我们在行动”系列讲座之后,领略到不同专家从不同角度对“幼小衔接”问题所做的分析和阐述,使我受益颇多。结合对日常工作的复盘,本次学习也使我对“幼小衔接”这个热点问题有了更进一步的认识和新的理解:

1.“幼小衔接”需要回归儿童本身

华爱华老师在讲座一开始便抛出了:“一边‘去小学化’,一边‘做入学准备’,矛盾吗?”这样的问题引发我们思考:到底什么是科学的“幼小衔接”?基于儿童发展的视角,我们认为科学的“幼小衔接”应该是做好“入学准备”,而不是提前“小学化”,二者背后蕴含的教育理念有着根本的`区别。做好“入学准备”反应的幼儿园教育任务是为幼儿的后继学习和终身发展奠基,不仅为适应小学,更要看到幼儿终身发展的价值,这就需要成人具有可持续发展的教育观和儿童观;而提前“小学化”折射的是一种追求短期效益和成绩的想法,正如华老师所说“‘小学化’的后果只有短期效应,但是它影响幼儿后继学习与终身发展的后劲”。所以回归儿童本身的“幼小衔接”应该是做好“入学准备”。

幼儿园要做好入学准备,应该首先要明确幼儿园的课程目标导向,如健康领域的目标是“提高运动能力增强体能和健康习惯”,不是“单项运动技能”;语言领域的目标是“通过口语表达与阅读理解提高沟通与叙事能力”,不是“拼音、识字、写字”;科学领域的目标是“在数学与科常启蒙中提高恩维能力和科学态度”,不是“特定的知识点”;社会领域的目标是“认识自我与他人与社会的关系,增进同伴合作与归属”,不是“同伴间竞争”;艺术领域的目标是“通过音乐美术等艺术启蒙活动培养审美兴趣”,不是“某项艺术技巧”。我们看到这些目标都聚焦在对幼儿本身学习品质和能力的培养上,而不是学科知识的储备上。在明确目标价值导向下的“幼小衔接”才是为幼儿后继学习和终身发展奠基,才能引领我们回归儿童本身。

在“幼小衔接”落实过程中,我们除了需要正确价值目标的引领,还要看到儿童当下的生活世界,正如胡华园长分享的“强化儿童的具身投入,注重身心融合的整体性学习过程”,引导儿童用身体和心灵来认识世界,用自己全身心的投入来建构对世界的理解和信念,从而不断建构对自我的认识,这样的理念正好体现在“探秘小学生活”中。

总之,“幼小衔接”需要我们具有可持续发展的意识,既看到对幼儿未来后继学习和终身发展起决定作用的学习品质和能力,又注重幼儿的具身投入,从身体到心灵做好“入学准备”。

2.“幼小衔接”需要回归日常工作

《关于大力推进幼儿园与小学科学衔接的指导意见》让我们明晰:幼小衔接应该常态化、生活化、游戏化、综合化,而非以额外的“衔接课程”去增加幼儿、教师和家长的负担。由此可见,幼儿日常的生活和游戏就是“幼小衔接”最好的途径,而教师要做到也就是要回归到日常工作继续深耕,使幼儿做好“入学准备”。

反观日常工作,由于不明晰科学“幼小衔接”概念和内涵,的确常常陷入了“幼小衔接”的误区,比如在个别化学习中投放一些学习性质的操作材料、带大班孩子体验一些具有小学形式的活动、在与家长交流中也会和家长讲一些大道理等,究其原因还是自身的专业“内功”没有修好。

通过这次讲座的学习,给了我很多修“内功”的启发。如华爱华老师在讲座中分享的孩子记录天气预报和玩规则游戏的例子,反应了孩子在日常生活和游戏中是怎么自然获得思维的发展和解决问题的能力,而教师要做的是观察、倾听、解读孩子的行为,教师要敏感捕捉到孩子当前行为和未来发展之间的关系,并且能向家长解释幼儿行为与入学适应的关系。又如,胡华园长在介绍“探秘小学生活”的系列活动中,也让我们感受到了生活课程的鲜活和灵动,正是基于孩子自己的生活和全身心的投入,才能建构起丰满的自我认识,而教师经常做的事情是和孩子待在一起,和孩子聊天,倾听孩子,一步一步追随和支持孩子的发展,给孩子最温暖的陪伴。最后,余琳园长分享的瓶盖雨和多米诺游戏,揭示了游戏对入学准备的意义和价值,启示教师要有目的、有意识的将幼儿混乱失控、简单重复的游戏推向有目的、复杂的、能够让幼儿聚精会神的游戏,让幼儿自然而然地学习。

通过本次讲座的学习,我认识到科学“幼小衔接”需要我们更加注重幼儿的生活和游戏,教师需要将幼儿当前行为和未来学习之间进行链接,如角色游戏和涂鸦能促进幼儿的叙事和表征能力发展,从而对语文学习有帮助;积木游戏能促进幼儿思维与科学探索能力的发展,从而对学习数学有帮助;运动性游戏是幼儿身体健康的保障,是学习的生理基础,同时当下对户外运动的研究也表明,运动不仅增强体质,而且促进幼儿认知、社会、语言等各方面的发展。教师在日常工作中也可以经常有意识的反问自己:是不是源自儿童真实的生活和游戏经验?同样的学习能否在游戏和生活中自然习得?儿童在活动中是否全身心的投入?儿童是否通过自己的努力和思考获得了相应的成长?

总之,对日常工作的不断反思、实践、再反思、再实践......也是教师螺旋式成长的必经之路。

数学函数心得体会 篇8

第一,对题目所给条件敏感。在熟悉基本定理、公式和结论的基础上,从题目条件出发初步确定证明的出发点和思路;第二,善于发掘结论与题目条件之间的关系。例如利用微分中值定理证明等式或不等式,从结论式出发即可确定构造的辅助函数,从而解决证明的关键问题。

计算题复习攻略:

近年计算题考查重点不在于计算量和运算复杂度,而侧重于思路和方法,例如重积分、曲线曲面积分的计算、求级数的和函数等,除了保证运算的准确率,更重要的就是系统总结各类计算题的解题思路和技巧,以求遇到题目能选择最简便有效的解题思路,快速得出正确结果。现在距离考试还有一个多月,考前冲刺做题贵在“精”,选择命题合乎大纲要求、难度适宜的模拟题进行练习是效果最为立竿见影的。

应用题复习攻略:

重点考查分析、解决问题的能力。首先,从题目条件出发,明确题目要解决的目标;第二,确立题目所给条件与需要解决的目标之间的关系,将这种关系整合到数学模型中(对于图形问题要特别注意原点及坐标系的选取),这也是解题最为重要的环节;第三,根据第二步建立的数学模型的类别,寻找相应的解题方法,则问题可迎刃而解。

考研数学线性代数特点以及备考策略

首先,基础过关。

线代概念很多,重要的有代数余子式、伴随矩阵、逆矩阵、初等变换与初等矩阵、正交变换与正交矩阵、秩(矩阵、向量组、二次型)、等价(矩阵、向量组)、线性组合与线性表出、线性相关与线性无关、极大线性无关组、基础解系与通解、解的结构与解空间、特征值与特征向量、相似与相似对角化、二次型的标准形与规范形、正定、合同变换与合同矩阵。而运算法则也有很多必须掌握:行列式(数字型、字母型)的计算、求逆矩阵、求矩阵的秩、求方阵的幂、求向量组的秩与极大线性无关组、线性相关的判定或求参数、求基础解系、求非齐次线性方程组的通解、求特征值与特征向量(定义法,特征多项式基础解系法)、判断与求相似对角矩阵、用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

第二,加强抽象及推理能力。

线性代数对于同学们的抽象与逻辑能力有较高的要求,大纲要求主要考查的有抽象行列式的计算,抽象矩阵求逆,抽象矩阵求秩,抽象行列式求特征值与特征向量,这四种抽象题型也是考研线性代数每年常出的题型,占有很大的比重。再说推理,可以这样说,线性代数是跳跃性的推理过程,在做题时表现的会很明显。同学们在做高等数学的题时,从第一步到第二步到第三步在数学式子上一个一个等下去很清晰,但是同学们在做线性代数的题目时从第一步到第二步到第三步经常在数学式子上看不出来,比如行列式的计算,从第几行(或列)加到哪行(列)很多时候很难一下子看出来。这都需要同学们不但基础知识掌握牢靠,还要锻炼自己的抽象及推理能力。

第三,综合提升。

线性代数从内容上看前后联系紧密,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然开阔。例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。以上举例,正是因为线代各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性较大,同学们复习时要注重串联、衔接与转换,才能综合提升。

数学函数心得体会 篇9

数学是什么?数学经历了什么?《数学简史》把数学几千年的发展浓缩在一起,帮助我们整体感知数学发展的同时也让我们更深层次的了解到数学的魅力和伟大,以及对前人的尊敬。

数学史的意义是什么?数学史就是研究数学产生、发展进程及其规律的一门科学史,数学史是学习数学、认识数学的工具,可以帮助我们弄清数学的概念、数学思想方法的发展过程,使我们对数学概貌有整体的把握和了解。数学源于人类的生存和发展,“人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的数觉到抽象的数的概念的形成,是一个缓慢的,渐进的过程。”人类为了便于生活生产的需要,开始以手指头计数,手指数不够了,开始用石头计数,刻痕计数。又经过几万年的发展,随着几种文明的诞生与发展,计数系统在各种文明中都有了表示方式,古埃及的象形数学,巴比伦楔形数字,中国甲骨文数字,中国筹算数码等等。因此研究数学史可以帮助我们探索人类数学文明的发展,了解数学发展过程中数学的连续性和不断完整性。简言之,追溯数学的过去,了解数学的现在,遇见数学的未来。

基于数学史研究的任务与原则,作为一线数学教师应该如何定位?荷兰数学教育家弗莱登塔尔说:“没有一种数学观念像当初被发现那样得以表述。一旦问题获得解决,一种技巧得到了发展和应用,就会转向解的程序侧面,……火热的发现变为冰冷的美丽。”这里弗氏批评那种过于注重逻辑性,没有丝毫历史感的教材“把火热的发现变成冰冷的美丽”。我国数学教育家张奠宙说:“数学原本是火热的思考,但是一旦发表出来,形成文字,写入教材,就变成了冰冷的美丽。鲜活的思想被淹没在形式演绎的'海洋里,数学史的任务就是提供各种数学历史背景,让学生理解数学的原始思考及其来龙去脉,获得真正的理解。”但是现实生活中我们大多数老师的数学教学的“传道授业解惑”大多数情况下都在向学生传递着生硬的道以应付各种的困惑,学生是被动的,数学的文化之美被硬生生的切断与冷落了。随着高考改革的发展,对学生数学文化阅读理解下的数学抽象、概括、推理等能力的要求越来越高,例如20__年高考数学全国卷的第4题关于“断臂维纳斯”背景下看学生能否能够运用数学语言,清晰准确的表达数学建模的过程和结果,题目前面的数学历史文化却让很多学生望而生畏。平时数学老师提了无数次的建模思想变得空洞无力!

作为数学教师,我们平时应该做些什么呢?”我们强调“学生中心论”、“学习过程论”、“课程生活论”,赵丰平总校长也说:“按照教育规律办学,是应对高考最好的办法!”因此首先应该让学生整体感知数学是什么,数学经历了什么,一起研究通读数学史,今天的数学知识仅仅是冰山一角!数学历史发展和文化传承的研究会更容易帮助学生走进数学,接受数学家们身上正面的影响与激励,激发学生无穷的学习兴趣,站在文化与社会的角度看数学、学数学更利于学生形成自己对数学思想方法的理解,提高自己的数学文化素养。重视数学史和数学文化在数学教学中的作用,当今已成为一种国际现象。数学文化也应该融合在我们平时的教学当中,例如初中学段的勾股定理是自古至今最富活力的数学产物,在学习勾股定理时我们不妨借助强大先进的271BAY下的大单元整体学程设计为学生提供丰富的素材以供学生来充分走进勾股定理的世界,让学生结合老师提供的情境、任务及路线图自主去研究勾股定理的过去、现在和未来,让学生用自己对勾股定理的理解去解决有关直角三角形的问题,期间形成的自己对数形结合思想的理解远胜过老师的任何说教!任何一个数学公理的过去、现在、未来都有一个强大、丰富的文化和历史作为支撑,而这些数学研究都是强有力的教育课程资源,这对学生的生命成长的影响是浸润式的、长久的、更是深刻的!

数学是一门历史悠久、分支繁多、抽象的学科,数学的世界更是丰富多彩充满文化魅力与人文挑战的!“路漫漫其修远兮,吾将上下而求索”,让我们和学生一起在《数学简史》中学习、碰撞、成长,近距离品鉴数学之美!

数学函数心得体会 篇10

在数学课程改革实施过程中,一边实践,一边成长,不断地吸收了新的教学理念。体验了一个学年的数学教学,我颇有感触。在新课程的标准下,学生需要在自主探究中体验“再创造”,在实践操作中体验“做数学”,在合作交流中体验“说数学”,在联系生活中体验“用数学”。学生体验学习,是用心去感悟的过程,在体验中思考、创造,有利于培养创新精神和实践能力,提高学生的数学素养。而传统的数学教学是学生被动吸收、机械记忆、反复练习、强化储存的过程,没有主体的体验。然而在新课程中,教师只不过是学生自我发展的引导者和促进者。而学生学习数学是以积极的心态调动原有的认知和经验,尝试解决新问题、理解新知识的有意义的过程。

《数学课程标准》提出:“要让学生在特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,就是个体主动亲历或虚拟地亲历某件事并获得相应的认知和情感的直接经验的活动。让学生亲历经验,不但有助于通过多种活动探究和获取数学知识,更重要的.是学生在体验中能够逐步掌握数学学习的一般规律和方法。教师要以“课标”精神为指导,用活用好教材,进行创造性地教,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,从而达到学会学习的目的。

一、教学方式、学习方式的转变

新课程教材内容已经改变了知识的呈现形式,这是一大亮点,教师作为教学内容的加工者,应站在发展学生思维的高度,相信学生的认知潜能,对于难度不大的例题,大胆舍弃过多、过细的铺垫,尽量对学生少一些暗示、干预,正如“教学不需要精雕细刻,学生不需要精心打造”,要让学生像科学家一样去自己研究、发现,在自主探究中体验,在体验中主动建构知识。学习方式的转变是本次课程改革的显著特征,积极培养学生主动,乐于探究,勤于动手,分析和解决问题以及合作交流的能力,改变学生从前单一、被动的学习方式。

二、从新课标看“学生”

在学习和尝试使用新教材的过程中,我越发感受到了学生学习数学的潜能是很大的,不可低估的,把数学放在了生活中,学生的潜能则像空气一样,充斥着生活的舞台,学生在学习时发挥着自身巨大的能量。如在学习“时分秒的认识”之前,让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。

总之,体验学习需要引导学生主动学习的全过程,在体验中思考,锻炼思维,在思考中创造,培养、发展创新思维和实践能力。当然,创设一个愉悦的学习氛围相当重要,可以减少学生对数学的畏惧感和枯燥感。让学生亲身体验,课堂上思路畅通,热情高涨,充满生机和活力;让学生体验成功,会激起强烈的求知_。同时,教师应该深入到学生的心里去,和他们一起历经知识获取的过程,历经企盼、等待、焦虑、兴奋等心理体验,与学生共同分享获得知识的快乐,与孩子们共同“体验学习”。

数学函数心得体会 篇11

读《数学简史》有感数学经历了历史的积淀,给我们的世界展现出来一个不一样的画卷,我看了一本书《数学简史》,书里讲的是数学的发展历史,并且对国内外的数学都进行了介绍。我想在时间的慢慢长河里,这是多么传奇的历史啊!那么接下来我带大家走进我所见到的数学世界。数学是有自己独特魅力的科学,《数学简史》一共有十四个大的章节,每一个章节都凝聚了数学的“理”性思维脉络,让我们清楚的领略数的价值和意义所在。首先谈谈数学早期的萌芽,事物的发展总是一步一步慢慢向前的,数学当然也不例外。

早期的数学主要是介绍数与形概念的起源,美索不达米亚、古埃及和中国等早期数学的萌芽,不同的文明,数学的产生与演变也有很多区别和联系,数的概念产生于原始人的生活和生产,中国早期用结绳、刻划等方式计数,并产生抽象过程从“结绳”到“书契”;美索不达米亚则是由楔形文字对数学内容进行了记载,一是“表格课本”也就是古代的“应用数学”,二是“问题课本”也称“理论数学”;古埃及数学知识的象征是至今蔚为奇观的金字塔,金字塔大多呈正四棱锥形,据对最大的胡夫金字塔的测算,发现它基地是正方形,各边误差仅仅是1。6厘米。这些早期的数学象征物的出现,给数学带来了一个基本的框架,让我们更好的了解的数学的发展。

其次,我们不得不说的便是古希腊数学,数学的发展和我们历史发展的是有很大相似之处的,它们都会经历兴盛和衰落,古希腊数学从雅典开始到亚历山大时期达到了全盛,但是物盛极必衰,在亚历山大后期就逐渐衰落,在此期间,数学史出现了几位十分重要的人物,论证数学开创者泰勒斯,他是古希腊“七贤之首”,据记载泰勒斯是第一个将埃及人的几何学带回到希腊。据说他本人发现了许多几何命题,并创立了对几何命题的逻辑推理,因此泰勒斯是论证数学发端第一位代表人物。有关几何的研究还出现了不少学派,毕达哥拉斯学派、埃利亚学派、柏拉图学派和亚里士多德学派等,这些学派活跃了数学世界。到了全盛时期出现了欧几里得《几何原本》“,数学之神”阿基米德,阿波罗尼奥斯的《圆锥曲线论》。后来在宗教势力的压迫下,数学逐渐走向衰落。最后,我想讲一下中国数学,在大家的记忆中,中国的数学好像与算盘关系紧密,这样说来确实如此,算盘是运用的现实中的数学,并且珠算在我国有很久的历史了。我国与数学有关的著作有刘徽的《九章算术》,书如其名,本书共分九章,第一章“方田”,第二章“粟米”九章“勾股”,第三章“衰分”,第四章“少广”第五章“商功”第六章“均输”第七章“盈不足”,第八章“方程”,第九章“勾股”,每一章都和实际问题紧密相关,像我们证明了数学源于生活。

还有祖冲之的《缀术》现已失传,最后是秦九韶的《数书九章》,从一到九写了:大衍、天时、田域、测望、赋役、钱谷、营建、军旅和市易。同是九章,《数书九章》与《九章算术》相比,在表述形式:问–答–术的基础上多了草–图,对问题的解答更具有示范性和实用性。随时间的推移,出现了李冶的“天元术”,朱世杰的“四元术”,构成了具有中国独特风格的代数学,到了现代。我国还有一些对数学孜孜不倦的研究者,如华罗庚和他的《堆垒素数论》,“数学科学奖”获得者陈省身和许宝騄,至此,中国的数学发展完全与国际接轨,完成了现代化的漫长历程。以前总觉得数学很难学,抽象的概念使我对她避之不及,但看过她的成长历程后,我发现她和大部分小孩子一样,有着调皮可爱的成长史,她不是一蹴而就的,而是在经历无数数学家的探索和证明中成长起来的,我对她的认识使我对她有了很大的改观,我想在我们年少无知的时候总感觉做什么都是难的,但经历了多了,我们会变得成熟稳重,时间给了我们经验,给了我们成长,让我们学会独立思考。

数学函数心得体会 篇12

《工程数学》矩阵论部分的课程已经结束,很高兴能够得到信息系主任朱老师的悉心讲授与耐心指导。

应用矩阵的理论和方法解决工程技术和社会经济领域中的实际问题以越来越普遍,矩阵论已经成为最有实用价值的数学分支之一。作为一个工科学生来说,矩阵论变的尤为重要,许多线性或非线性的问题都要用到矩阵论的知识,象我们的专业基础课《弹性力学》、《有限元》。

此书第一章“线性代数基本知识”读起来还是蛮轻松的,因为大部分的内容已经在本科阶段的《线性代数》里面学过了,再加上考研的时认真复习过。也许觉得前面的轻松,学后面的内容的时候也就有些放松,结果是过了几节课后就感到书上的内容是越来越生僻了,有些东西太抽象,读起来枯燥,难以读懂;它比《线性代数》更深入,难度大多了。还好及时调整,勉强跟的上课,当我认真去学的时候,感到书上的东西还是蛮有意思的。把前后章节的逻辑关系,连贯关系搞清楚的时候,那是一种惬意;当你把书上一个看似很难的题目弄清楚的时候,你会有一种征服感、胜利感、甚至是一种虚荣心的满足。本人自认为第二章最有意思,也是学的最好的一个环节,从相似对角化到相似Jordan矩阵,再到Cayley-Hamilton定理、上三角矩阵、上Hessenberg矩阵,如果把它们的相承关系及应用条件都弄清楚了,那么这一章也就算学懂了。

读完《工程数学》矩阵论部分,感觉学的还不够,以后还的加强学习。最后要感谢朱老师的教导。

数学函数心得体会 篇13

一气呵成,读完《数学简史》,心底不由得涌上一股冲动,那是一种什么感觉呢?对了,是感动,是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。我不知道人们为什么长久以来称数学为“科学的女皇”,也许是女皇有着一种让人无法亲近的神秘感,但是她的面容又是如此的让人们向往和陶醉。女皇陛下,揭开你神秘的面纱,让我目睹你绝世的风姿,体会你无尽的风韵,感动你带给我所有的感动吧!仰望者,唯巨星也!数学的漫漫长河中,涌出过无数的璀璨巨星,从毕达哥拉斯、欧几里德得、祖冲之到牛顿、欧拉、高斯、庞加莱、希尔伯特……当他们一个个从我的心底流过时,有一种兴奋,更有一种感动,他们才是时代真正的弄潮儿。欧几里得的《几何原本》开创了数学最早的典范,是漫漫长河中的第一座丰碑,公理化的思想由此而生;祖冲之关于圆周率的密率(355/113)给了国人足够骄傲的.资本,也把“割圆术”发挥到了极致;牛顿和莱布尼兹联手创造了微积分(尽管他们之间有这样那样的矛盾),开创了数学的分析时代,微积分也被誉为“人类精神的最高胜利”(恩格斯语);历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。一个多世纪前的1900年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。正是这23个数学问题,引领了整个二十世纪数学发展的主流。1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达300年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。就这样一次次的被感动,不仅为成功者喜悦感动,也为不被承认的成功者默默感动。天才往往是孤独的,先知者注定得不到世人的理解。许多天才的数学家,英年早逝,终生难以得志。

椭圆函数论的创始人阿贝尔一生贫病交加,大学毕业长期找不到工作,在他仅仅27年的短暂生命中,却留下许多创造性的贡献。但当人们认识到他的才华,柏林大学终身教授的聘书下达时,他已经离开人世两年了。同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。

天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?在那漫漫长河中,璀璨巨星令我欣然神往,惊涛骇浪更令我心潮澎湃。三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势,海洋般伟岸的身姿。

每一次危机巨浪之后,纳百川,聚众流,数学以更加广阔的胸怀滚滚向前,尽管这其中有很多悲壮的成分。

第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。

第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。

第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

滚滚巨流,势无可挡,数学的长河竟拥有如此的悲壮和激情,那种“山穷水尽疑无路,柳暗花明又一村”的成长能不被感动吗?

数学函数心得体会 篇14

数学是一门我们无法避免的学科,无论你是否喜欢,都无法轻易地排除它。学习数学让我们更懂得解决问题的方法,加强我们逻辑思维和分析能力,培养我们耐心与恒心。下面是我对数学学习的一些感悟和体会。

一、关注基础知识。

数学作为一门基础性学科,需要我们从基础知识打好根基。很多时候我们总是想着快速学完一本书,往往会忽略基础知识的重要性。要牢牢抓住基础知识,不然后面的学习可能会变得毫无头绪。把基础扎牢,学习起来才能更加得心应手,并走得更远。

二、注重巩固笔记。

学习数学不只是把书本上的内容死记硬背,还需要进行反复的练习和巩固。在学习过程中可以通过写笔记的形式,把自己的想法,疑问和答案写下来,这样可以帮助我们更好地巩固知识点,同时避免遗漏知识点。

三、多做各种类型题目。

数学的学习需要通过各个练习题来帮助我们巩固知识点。我们要了解到数学考试所涉及到的各种类型的题目,这样我们才能更好地复习和预习。在做题的时候可以先把题目分析明白,再去针对性地去解决问题。同时,也要多做一些和自己所学知识不同层次的问题,挑战自己的思维。最重要的是要不断地练习,这样才能更好地掌握数学。

四、学会归纳总结。

在学习数学的过程中,我们需要学会归纳总结。这个过程包含了我们把一些小知识点整合到一个大知识点中的过程。这不仅仅是为提升自己的思维转化能力,还有助于我们从宏观的角度去理解知识点,更将知识内化为我们的生活中。通过归纳总结,我们可以让学习变得更加轻松。

五、积极的态度面对数学。

数学不是一门容易掌握的学科,尤其在初学阶段。有时候,我们会遇到一些不懂的知识点,这个时候我们不能弃疗放弃,而是要积极去探究,找寻答案。坚持的`学习,致力于不断地解决问题,这样才能在数学的道路上走得更远。因此,我们要用积极的态度来面对数学,相信只要努力,总会有收获。

总之,数学在我们的成长中是不可或缺的。学习数学可以让我们掌握一种新的思维方式,并且让我们在面对未来的求学和工作中更有竞争力。我深刻理解了数学是基础的学科,而基础在于坚实的根。只有量变,才有质变。因此,在学习中,我们要始终保持耐心,继续努力,不断完善自己,为了未来的发展我们要踏实推进。

数学函数心得体会 篇15

数学是一门重要的学科,相信大家都想学好它,下面我想和大家分享一下我的学习方法。

1、课时预习。以前在初中时,没有课前预习的习惯。后来上高中了,发现没有预习只是带着课本到课堂上听老师讲解,目标很不明确,听课时便会处于被动的地位,要么盲目地去记笔记,要么就是茫茫不知所云。这样有时记下了很多教材上原本有的内容,累得要命却没有价值。如此一来只能是事半功倍。当尝试预习后再听课,觉得不再是茫茫不知所云了。如果要是时间不多,我会在课前2~3分钟预习一下上课即将讲的内容,提前进入状态,争取主动权。

2、认真听课。听课不是听就行了,而是要认真听,要把注意力集中,跟着老师的思路走,有些同学不把上课作为学习的中心环节,一心想用课后的时间来弥补,我觉得这其实是本末倒置了,因为错过了课堂上的第一时间吸收,有的东西以后自己理解起来就是费劲了,就像捡了芝麻丢了西瓜那样。

3、认真做练习,看练习题的例题,有时候,由于时间紧迫,我便马马虎虎地完成练习,等老师评讲时,对于那些没认真思考过的题目上,只能两眼看着老师板书,有时思路跟不上,后面老师所讲的根本听不明白。认真做练习还可以让自己知道自己喝解出来正确答案,但方法是否准确或解题步骤还欠缺什么,免得考试时白白扣掉一些不该丢失的分数。其次,练习册中的例题也很好,里面还总结了一些学习方法,有时间应该看一下。

4、多看错题本。很多同学做了错题本,但他们几乎不怎么看。我也是,导致一些题目错了再错。

以上是我学习的方法,但做起来要一定的时间,如果有同学有比我更好的学习方法,不妨说出来和大家分享一下。

数学函数心得体会 篇16

在初中数学中,函数是一个重要的内容。在学习函数的过程中,我有了许多体会和心得。首先,了解函数的概念和特点对于学好函数至关重要。其次,掌握函数的图像及其特点是运用函数的基础。再次,学会应用不同的函数解决实际问题是函数学习的目标。最后,锻炼函数的综合运用能力是提高数学素质的关键。总而言之,在初中学习函数的过程中,我受益匪浅,不仅提高了自己的数学能力,也提升了自己的思维能力。

首先,掌握函数的概念和特点对于学好函数至关重要。在学习函数之前,我对函数的含义和概念并不了解。在老师的'引导下,我知道了函数是用来描述两个变量之间的对应关系的。并且函数具有唯一性,即对于一个自变量,对应着一个确定的因变量。理解了函数的概念之后,我开始学习函数的特点。函数的图像是一条曲线,可以是直线,也可以是曲线。而且函数的图像在直角坐标系中不会有断点。这些基本的概念和特点是学好函数的基础。

其次,掌握函数的图像及其特点是运用函数的基础。学习了函数的概念和特点之后,我开始学习函数的图像及其特点。学习了线性函数、二次函数和反比例函数等基本函数的图像后,我了解到每种函数的图像都有其自身的特点。线性函数的图像是一条直线,斜率代表了直线的倾斜程度;二次函数的图像是一个开口向上或向下的抛物线;反比例函数的图像是一条过原点的曲线,但不会过第一象限和第三象限。掌握了函数的图像及其特点后,我能够更好地运用函数来解决问题。

再次,学会应用不同的函数解决实际问题是函数学习的目标。函数学习的目标之一就是能够运用函数解决实际问题。在学习过程中,我遇到了一些实际问题,如两点间的距离、速度与时间的关系等。通过分析问题,我选择了合适的函数,并代入相关数值,得到了问题的解答。通过这些实际问题的练习,我不仅加深了对函数的理解,也提升了自己的解决问题的能力。

最后,锻炼函数的综合运用能力是提高数学素质的关键。函数的学习并不仅仅局限于某一类特定的题型或内容,而是需要将函数的知识与其他数学知识进行综合运用。在解决综合运用题时,我需要分析问题,确定解题思路,并灵活运用函数的知识进行推理和计算。通过这种综合运用的训练,我的数学素质得到了全面的提高。

总而言之,初中函数的学习对于我的数学能力和思维能力有着积极的影响。通过掌握函数的概念和特点,我能够更好地理解函数的含义和作用;通过掌握函数的图像及其特点,我能够更好地运用函数解决问题;通过解决实际问题,我提升了对函数的应用能力;通过锻炼函数的综合运用能力,我提高了自己的数学素质。函数学习虽然需要耐心和努力,但在我看来,它是一种有趣、实用且能够提升数学素质的学习内容,对我今后的学习和生活都具有重要意义。

数学函数心得体会 篇17

暑假培训对于许多小学生和初中生来说是一个很常见的学习选择。这个暑假,我决定去上一节数学培训班,希望能够准备好以后的学习。在这个培训班里,有一位非常出色的数学老师,她的教学方式和授课内容都让我深受启发。在这里,我想分享我的心得和体会。

这位数学老师有一种非常生动活泼的授课方式。她会通过一些例题来引出一些数学原理和运算规则,这让学习变得有趣且易于理解。同时,她也会在课堂上引入各种辅助用具和互动环节,增强我们对数学知识的记忆和理解。

在这个培训班中,我获得了很多有关数学知识的启示和透彻的解释。特别是一些难以理解的数学概念,老师通过简单的例子和演示让我们深入了解。我发现我的数学技能得到了很大的提高。通过老师的.讲解和示范,我能够更好地应对数学测试和考试。

这个培训班不仅仅是数学授课,还有一些课外活动。这些活动包括数独和西洋棋比赛。这些活动不仅丰富了我们的课余生活,还提高了我们的数学技能。经过这些活动的锻炼,我们更能够灵活运用数学思维和解决问题的能力。

在这个暑假培训过程中,我汲取了大量的数学知识,同时也得到了这个数学老师的启发和鼓励。我发现,当你的老师很有热情和耐心时,数学学习变得非常有趣。并且,这个培训班让我意识到,学习不仅仅是课堂上的事情,也需要通过不同的活动和参与来锻炼自己。这些收获让我更有信心地面对未来的学习。

数学函数心得体会 篇18

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。

有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。

至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。

l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-l)与y=f(1-x)的.图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。

3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。

4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益

数学函数心得体会 篇19

在初中数学学习中,函数是一个十分重要的概念。对于函数的掌握,不仅关系到后续数学知识的学习,更能够培养我们的逻辑思维和解决问题的能力。

对于初学者来说,了解函数的定义是最基础的。函数是一个映射关系,可以将自变量x的取值映射到函数值y上。在初中阶段,我们主要研究一次函数、二次函数和反比例函数等。

从理论到实践,我们需要通过大量的练习来加深我们对函数的认识。对于一元一次函数而言,我们需要掌握截距式、斜率式和两点式的转化和运用;对于一元二次函数而言,我们需要掌握顶点式和交点式的转化和应用;对于反比例函数而言,我们需要掌握变比法和套路多变的应用。

然而,光靠死记硬背是不够的。我们更需要理解函数的本质,以及应用的具体过程。在练习过程中,我们可以尝试理解函数与图像的关系、函数的单调性、函数的零点、函数的极值等。针对不同的题型,我们可以掌握一些常用的解题方法,在操作上需要细致认真,化繁为简。

除此之外,在数学学习中,需要我们坚持刻苦练习、勇于挑战自己的心态。数学并不是枯燥无聊的科目,它蕴含的思维乐趣越来越受到年轻学生的喜爱。我们应该积极与身边的`小伙伴交流思路,合作解决问题,共同取得更好的成绩。

总的来说,在初中数学学习中,函数是一道令人难以逾越的坎,十分考验我们的逻辑思维能力以及对知识的理解和掌握。我们需要从理论到实践深入钻研函数的特性和应用,同时也需要培养探究问题和解决问题的勇气和能力。

数学函数心得体会 篇20

观看了徐老师的正方形性质这节课,让我收获特别多,徐老师先回顾复习,自主研学,让学生自己观察,回答特征,用自己的话说出正方形的定义,对于正方形的定义徐老师还播放小视频,更能提高学生兴趣,也是课堂的调味剂。徐老师在例题以及变式训练讲解中,完全让学生上台讲解,学生自己动手书写,老师检查,找出优秀作业和过程欠缺的作业,让学生发现问题,解决问题,整节课以学生为主体,老师为主导充分让学生动起来。并且在课堂小结中,她分为三步,一步一步把本节知识重新梳理,作业中还要求学生对自己课堂中提出的思考、猜测进行证明,将课堂中的问题在课下进一步巩固延伸,整体设置具有完整性。这节课真特别精彩。

通过侯老师对今年中招试题的分析,我也明白了我们的课堂不能重教轻学、更不能只重结果不重过程,也不能重技能轻思维,我们要让学生会听课会思考过于解题。我们要注重学生获取信息能力的考察,加强阅读能力,抓住问题本质,找到组织,准确辨识概念、应用概念,对于几何问题,要思维引导,思维制胜,要积累基本图形,化繁为简,神头探究意识,提升转换能力,思维引导,提高解题能力。对于统计题,要引导学生从材料中提取信息。对于函数,要突出函数概念的建构过程,关注函数思维方法的渗透,重视一般观念的'引领,一定要重视过程和思想。要多培养学生一题多解的思维能力。

我们在今后教学中,要重视概念教学的每一个环节,重视基础教学,教学和复习要抓整体,我们在研究中考的同时,要立足教学,让学生明白万变不离其宗,扎实的基本功至关重要。中考路上任重而道远,我们要充满激情,以饱满的精神去面对。

数学函数心得体会 篇21

我把个人的一些心得体会总结如下:

1、多媒体的大量运用

数学课堂上运用课件目的一方面是为了节省时间,二是直观形象展示给学生。这次的课件制作水平都很高,而且使用效果好,克服以前课件华而不实的现象。看的出都是老师们精心准备的。课件只是教学的辅助手段,是在手动不能实现的条件下化抽象为直观形象,为突破难点服务,所以适度地发挥多媒体的作用是很好的。

2 、创设的情境真正为教学服务,如果只是为了情境而情境,那就是一种假的教学情境。在创设情景时,要和实际生活联系起来,而不是为了创设情景而创设情景。”在今后的教学工作中一定要发扬成绩,找出教育教学方面的差距,向教育教学经验丰富的老师学习,教坛无边,学海无涯,在以后的教学中,以更加昂扬的斗志,以更加饱满的热情,全身心地投入到教育教学工作中。在

3、体现主动性学习,重视学生的动手操作。

智慧之花开在孩子们的手上。我们老师重视孩子的动手操作,重视孩子的手脑结合,俗话说:心灵手巧。要学好知识就是要孩子们主动地参与到学习活动中来,那么动手操作就是孩子们最好的学习活动。孩子们在老师的指导下,动手操作,自主探究,合作交流的学习知识名家的课。

我有一些自己的看法,在这提出来请大家指点:

1、在课堂上教师要适时等待,延缓思考速度,学生有时会将思考结果暂时遗忘。此时老师如能适时等待,在等待之后学生还处于“口欲言而不能,心求通而未达’的状态,教师在对其难点相机点拨、指导而不适用七凑八凑来评价学生的.思考成果,想必学生的感受会好一些。

2、改变问题拓展思维广度。学生的数学学习受生活经验或原先只是基础影响较大,当新问题和旧经验产生冲突时往往会迷失方向做不出正确判断,此时教师不可操之过急,用改变提问角度的方式来理答,可将学生的思维引向更广阔的空间。

从事农村教育的我,感触多多在今后教学中,我要继续学习业务知识,让农村的孩子走出农村,争取与城市孩子无差异,但我知道,这需要我付出很多,但是我愿意,我愿意为农村教育付出我的一切。真正让学生在主体积极参与、操作、交流、动脑、动口的探究性学习中建立概念、理解概念和应用概念。

数学函数心得体会 篇22

说到学数学,我想有许多的人一定会觉得数学很难学,而且往往花很多的功夫去学习反而学不好,并且有时会造成反效果,使人厌学。这时就一定得树立自己的自信心,相信自己能行的,自己一定能做得更好,所以这时不能丢掉自己的自信心。

当周老师说:“没考到一百分要写一篇五百字的数学心得”时,大家都想考好期末考试,逃避不写数学心得,但是,事情不是那么幸运,我考了九十九分,还是要写数学心得。

还好,周老师说过该怎么写,所以,我就这样写了。

今天,是晴朗的一天,我早早的起了床,到学校去上课。

我先坐了下来,交完作业后,我们开始早读。

早读过后就该上课了,第一节课是数学课。老师开始讲课了,我没认真听讲,所以觉得无聊,便开始翘板凳。突然,老师大吼到:“张珑耀,你又在翘板凳,万一不小心,摔下去,把脑袋摔冒烟儿怎么办?”全班都笑起来,我脸红了,不好意思。

没想到,今天下午辅导课就考试,我真后悔我早上没认真听讲,这次成绩肯定不好。我做完试卷后,便开始画画玩了,也不检查试卷。第二天,老师就公布了成绩,我才考了79分,我心里很难受,因为别人都考90多分,连100分的都有,我差了别人那么多分。

所以啊,大家上课一定要认真听讲;不要翘板凳;开小差;考试时,试卷做完了一定要检查,我这就是教训啊,教训啊

《分数的意义》这节课教学可以说是课堂教学改革一个全新的尝试。教学的主要思想是:在充分调动学生学习的主动性、积极性的基础上,能用学生自主学习、提出问题、讨论交流、解决问题的方式来组织教学活动,充分体现学生的主体地位。学生学得生动、活泼,自主学习的积极性、主动性得到充分发挥,具体表现为以下几点

1、 确定基础与发展并重的教学目标

以人发展为本是当前教育的共同理念。在本节课中,教师不仅重视让学生掌握知识,并能十分重视学生对学习过程的体验和学习方法的渗透,重视学生的个性化思维的展示,让学生通过回忆想象、自学教材、学习交流、动手实践等数学学习活动来发现知识,感受数学问题的探索性,促进学生学会学习。在教学过程中,始终把学生放在学习的主体地位,努力提高学生的自学能力和学习兴趣。

2、 着力于自主探索的学习方式

教师充分利用学生已有的知识经验,提出了自主探索学习的步骤,学生通过自主选择研究内容、独立思考、小组讨论和相互质疑等学习活动,获得了快乐数学知识,学生的能动性和潜在能力得到了激发。体现在两大特点;一是大胆放手,给学生提供自主学习和合作交流两种学习方式,重视直观教学,通过观察、判断、交流、动手操作抽象出分数的意义。二是做到了学生能自主探索的知识,教师决不替代。如:让学生自己动手找出多种平均分的方法;分母、分子不同时出现,就是让学生看到分母就想到平均分,看到分子就知道表示这样的份数,让学生在实践中去感悟,自己弄清楚分母、分子的含义,并能用分数表示;对不懂的地方和发现与别人不一样的,有提出疑问的意识,并愿意对数学问题进行讨论交流,加以解决。这样就给了学生独立思考的时间,使学生有了发挥创造的空间,有了充分表现自己的机会,同时也让学生体验到学习成功的愉悦,促进了自身的发展。

3、 营造民主、宽松的探索学习氛围

这节课从一开始到结束,始终处于热烈的气氛之中,平等的师生关系和开放的学习方式,有力地支撑了这种积极的氛围,形成学生对数学知识的主动获取,充分暴露自己的思维过程。体现在两个方面:一是教师尊重学生,平等对话、相信学生、让学生有表现自己的机会。二是注重课堂自主学习与合作精神的体现,在教师的指导下学生真正懂得如何与他人融洽地协作学习,真正懂得正确对待探索中遇到的困难。学生面对新知识,敢于提出一连串想知道的新问题,教师组织学生广泛地探讨,使概念内涵充分揭示,让学生动手操作深化对分数的理解。整节课都在民主、宽松的学习环境中学习数学,获取知识。

数学函数心得体会 篇23

我从小学到初中,数学一直是我的最爱,在高中学得最多想得最多的是数学,可我的数学成绩平平,我觉得没掌握到高中数学的学习方法,学习数学的兴趣没提高。

为使自己更有效、更顺利的投入高中阶段的数学学习,我想在今后的学习中,制定学习数学的个人计划。主要分为以下几个部分:函数、平面几何、立体几何、概率、不等式、数列、复数、向量,立体几何进行多方面的广度和深度学习,熟悉定律以及会熟练运用空间直角坐标系。如:数列,这是高中学习的一个难点,因为出题者并不会简单的出等差数列和等比数列,其中还有很多技巧,但是通过大量的练习我发现数列的题目类型基本是固定的,它都是通过化简找出规律,我一定要多练,记住特殊的规律就可以解决大部分题目。概率、复数、向量,都是记住固定的公式模式然后去解决问题,并没有太多的逻辑思维,当然概率这一块可能涉及一些复杂的逻辑思维,我会深刻理解概念,排解这部分的难点。剩下的.就是函数、平面几何和不等式,这是高中数学的重点难点,拉开差距就是在这几部分上,不等式是为函数服务的,而函数和平面几何构成了一种非常有效的解题方法数形结合,把函数和图形结合起来解决问题。平面几何包括直线、圆和圆锥曲线,直线和圆比较简单,圆锥曲线比较难,因为它综合了直线、圆和二次函数,方法较多,类型较多,需要较强的逻辑思维和数形处理能力,这部分更需要我每天多练习多总结多思考。

总体来讲,学习数学最重要的两点是思考和练习,边练习边思考,一定要多练。我以后无论做什么习题都要像完成家庭作业一样,拿一本练习本,认认真真地写步骤,像完成大题一样去解决每一道题,过程中要规范自己的做题格式。练得越多,手就越灵活,就会熟能生巧,如果这样,我就能真正以不变应万变,边做边总结,我相信只要刻苦,一定会取得好成绩。

最后,无论遇到什么困难,都要坚持下去,我到了高一下学期,我的父母为我操的心不比我少,想放弃的时候想想他们,想想他们的辛苦,其实我们的困难和失败算不了什么。数学学习不仅仅是聪明就能学好的,更重要的是要以良好的心态去面对,不要惧怕失败,考试是为了找出我的错误,认真找出自己错在哪,及时有效改正就行。改进自己的学习方法,是我最新的真是行动,我相信,提高自己的数学成绩已指日可待。

数学函数心得体会 篇24

一次函数是中学数学中的一个基本知识点,每个学生都会在数学课上学习,而学生们对一次函数肯定也有着各自的体会和感受。在我看来,一次函数不仅仅是一个学科知识点,还能反映出我们在学习中的态度、方法和习惯。下面我将从学习困难、思维转变、实际应用、学科交叉和团队合作五个角度来谈谈我在学习一次函数中的心得体会。

首先,对于我这个学习一次函数较为困难的学生来说,学习过程中的迷茫感是不可避免的。但是,在这个过程中,我领悟到了一个道理:在学习过程中,获得知识的不仅仅是通过书本、老师的讲解,还需要通过不断地练题和去拓展自己的知识面。尤其是在一次函数的图像和应用层面,通过课外资源,在自己的口袋里找到数学的乐趣,并且重新坚定了数学学习的信心。

然后,学习一次函数也让我们的思维发生了转变。学习一次函数需要靠图像进行比对,同时还需要寻找数学公式的背后原理,这就需要我们有较强的预见性和逻辑思维能力,这场思维的转变对我在综合学科方面的发展帮助非常大。如今,我的奥数和物理成绩也因此有了很大的提升。

其次,在实际应用中,学习一次函数不仅仅是有学科知识的提升,还可以应用到实际生活中去。一次函数充斥于我们生活的各个角落,比如高速公路上的路程与时间、银行卡的利率计算等等,因此,当学习一次函数时,我们不仅仅是在学习知识,还要学会如何将学科知识应用到实际中去,相信这种学科的能力在高考中是极为重要的。

接着,一次函数的学习也让我们意识到学科的`交叉性。虽然学习一次函数是数学课上的重要知识点,但它也与物理、化学课的某些知识点相等有关联,比如在物理课上电路的分析和计算中就涉及一次函数知识。因此,学习一次函数时,我们也得到了其他学科对一次函数的“一见钟情”,更深层次地理解了数学和其他学科之间的奥妙。

最后,团队合作也是学习一次函数的重要部分。在一起学习,相互讨论更是能够提高自己学习效率,特别是针对一些偏向实际应用的问题,结对学习一定能够取得比较好的效果。这种团队合作中每个成员都能够及时互相纠正错误和互相补充缺陷,并且相互之间的学科知识的共享,也是学习一次函数的一大特点。

总的来说,在学习一次函数的过程中,不仅仅是学习了一门数学课程,更是提升自己的一种途径,让我们在学习、生活甚至是工作上都能更好的发挥自己的优势。相信这些心得体会,能够对其他人的学习有一定的启发意义。

数学函数心得体会 篇25

在生活中,有许多的人都觉得数学很难。它有着很多很多绕来绕去的公式。有着许许多多连来连去的关系。这都让人很是“头疼”。但当我读了《数学简史》这本书后,我发现,其实数学并没有那么难懂。它也是从很简单的概念开始,然后再慢慢地延伸开来的。

在很久很久以前,原始人便有了数的概念。在数量不多的食物或其他东西中间,增加几个或减少几个相同的东西,他们便能够分辨出这个东西的多和少。慢慢地,当人类开始养羊或其他动物来维持生活,而不只是靠狩猎为生的时候,人们便懂得用新的方法来知道羊是不是一只没少,全都回来了。

早晨,当羊出去吃草的时候,每出去一只,便捡起一颗石头。到了晚上,羊儿们都吃完草,活动完之后,回到羊圈里时,每进一只,便丢掉一颗石头。每当石头都丢完了,便确信羊儿一只没少,都回来了。早在有文字记载之前,猎人们便知道,当把两只箭和三只箭放在一起时,便有了五只箭。后来就逐渐出现三种具有代表性的计数方式:石子计数、刻痕计数和结绳计数。

随着人类的进步,人们需要更多的东西来生活和推进人类的进步。但如果还像以前那样一个一个的数,不免会觉得太麻烦、太费时间,这时,就需要拥有一种新的方法来计算。那就是十进制。

我们现在通常用的是十进制。也就是逢十进一,借一当十。但在古代,人们有时却用的是十六进制,如一斤就等于十六两,半斤就等于八两。当然,除了十六进制和十进制,还有其他的进制。比如五进制、十二进制、二进制等。二进制的应用则促进了电子计算机的发明。

你看,数学其实并不难,它只是从一个简单的数学概念开始,慢慢地发展,到后面的几何学。

数学函数心得体会 篇26

《中学数学简史》内容概要:所选内容贴近高中生数学水平,针对中学实际,以史为据,精选史料,用通俗、生动的语言介绍数学产生、发展规律,数学思想方法等。适于高中学生、中学教师和具有中等以上文化程度的其他读者阅读……

《中学数学简史》读后感,来自卓越亚马逊网友:比想象的要好很多,MorrisKline的名著《古今数学思想》完全忽视了中国的曾经灿烂的数学历史。看了这本书,你会为中华民族曾经领先世界几千年的杰出数学文化而自豪,可惜在元代以后没落了,书中的大量数学家轶事也很生动有趣!很值得一读……

中学数学简史的读后感,来自京东网的网友:我不得不说,这是我看过最生动有趣的数学史书籍,而且看过后对于各数学分支的来龙去脉即可得到很清晰的形象,我觉得本书对于中学数学的学习不但不是额外的负担,对于想在数学领域扎根的人们,掌握数学史,绝对是不可绕过的必要之路!而本书恰恰是非常适合中学生,甚至对于离开校园20多年的我仍然给于我极大的阅读乐趣!(最近3个月为了工作需要我重拾中学数学内容,买了超过50本相关数学参考书,所以对此书绝无过誉)我在此,极力向你推荐本书,因为它不但能保证让你“学到你以前所不知道的数学史实”同时还让你“惊叹于著者活泼、生动、有趣且深入浅出的笔法”,所以看这本书绝对是一种享受……

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。

数学函数心得体会 篇27

初中数学中的函数概念,在高中数学中也一直是重要的基础内容。通过这次的复习,我受益匪浅,深刻认识了函数的概念以及它在数学中的应用。

首先,在复习中我了解到了函数的定义。函数通常由输入变量和输出变量构成,它将输入变量的值域映射到一个或多个输出变量的值域。在这个过程中,函数可以被表示为一条曲线、一幅图像、一个公式等。函数的定义形式非常简单,但函数的本质却非常广泛。与函数有关的.数学概念也非常多,包括域、值域、自变量、因变量、逆函数、函数图像、函数表等,这些概念都是在初中数学中就需要学习的。

其次,在复习中我认识到了函数在实际应用中的重要性。函数是数学中非常实用的概念,在实际应用中也有着广泛流行。例如,在物理学中,物理现象往往可以通过公式来描述。这些公式通常包含了函数及其相关概念,例如速度函数、加速度函数、力函数、位移函数等。在经济学和管理学中,函数也是重要的工具。销售量、价格、成本等变量,都可以采用函数模型来进行预测和优化。在生物学和医学中,函数也是必不可少的工具。例如生物体内的代谢过程、生物体对外界的反应等都可以用函数来描述。

最后,在复习中我深刻认识到了学习函数的重要性。初中数学中,函数的命题通常较为简单,但是在高中数学中,函数的复杂性和重要性都有了很大提升。因此,在初中时就要认真学好函数知识,打下稳固的基础。此外,学习函数并不是为了应付考试,而是为了掌握数学这门学科。只有深入理解函数概念及其应用,才能真正领悟数学的奥妙所在。

综上所述,函数是数学中非常重要的概念,在初中阶段就需要学习好。学习函数不仅限于死记硬背知识点,更要注重挖掘函数概念的本质和应用,在实际问题中进行思考和应用,才能真正掌握数学的精髓。

数学函数心得体会 篇28

数学教育概论》这本书是由张奠宙、宁乃庆主编的,是普通高等教育十五国家级规划教材数学系列教材之一,它带附带有一个光盘,由高等教育出版社出版。这是一个关于数学教育基本理论与实践的概述,目的是帮助具有数学专业知识的学生获得有关数教育的基本知识和技能。它不再只是教材教法的说明书式的记叙,而是阐述数学教育的规律,具有自己怕学科体系。全书分为实践篇和理论篇。首先从观赏、分析大量的数学教学案例入手,帮助学生编制教案,走上讲台。然后概略地介绍当代数学教育的基本理论,探讨数学教学的目的、学生应具备的数学能力、数学教学模式、数学教育的德育功能等基本课题,同时研究数学思想方法的价值,以及数学史、数学教育技术、数学教育心理等有关问题。书中设专章介绍和研究《全日制义务教育数学课程标准》和《普通高中数学课程标准》的制定和实验,并就数解题和数学考试、数学教育研究等问题进行阐述。

数学是人类文明的火车头。古希腊文明时期的数学著作──欧几里得的《几何原本》成为人类理性精神的典范。它在西方国家的印刷数量,仅次于圣经。当历史经过中世纪的漫漫长夜之后,是笛卡尔、费马、牛顿、一莱布尼茨创立的微积分,宣告了资本主义文明的科学黄金时代的来临。19世纪发现的非欧几何、高斯---黎曼建立的微分几何进入爱因斯坦的相对论,缔造了物理学革命,成为20世纪文明的标志之一。现在,当人们在普遍享受信息文明的时候,自然会想起为它奠基的数学家的贡献:冯诺依曼设计的电子计算机,连同维纳的控制论、仙农的信息论,人类终于迎来了航天飞行和手机普及的时代。

数学无处不在,数学无往不利。人类的进步一时一刻也不能离开数学。就单个个人而言,由于数的严谨与抽象,经过烽学的学习和训练,人的思维能力就获得一次升华。学习数学,不仅为学习其他学科打下了扎实基础,而且能够培养人们不迷信权威,不感情用事,不停留于表面现象的思维品质,甚至从数学这无声的音乐、无色的图画中,领略到美的崇高境界。也正因为如此,在世界的所有国家,数学都是主课,学生从一年级入学到中学毕业,一直不有离开数学。重视数学,是一个国家文明的象征,也是一个国家教育进步的标志。

中国的古代数学曾经有过辉煌的成就,以刘征、祖冲之、秦九韶为代表的中国数学学派,建立了与实践联系紧密且以算法见长的数学体系,但是12世纪之后就渐渐地落伍了。20世纪以来,中国数学家急起直追,努力为世界数学文明做贡献。在当代的数学史上,可以看到陈省身、华罗庚、许宝禄、吴文俊等中华数学家的名字。XX年x月,国际数学家大会在北京举行,这表明中国数学已经进入世界数学的主流,向着21世纪数学大国的目标挺进。

但是,中国还不是数学强国。中国数学离国际先进水平还有较大的距离。在数学研究一线上中国数学家还要继续努力,便更重要的是培养数学后备力量,提高我国公民的数学素质,加强科学技术领域的数学支撑。为此,就要从加强数学教育着手,从娃娃抓起,从青少年的数学培养抓起。

我从事数研究和数学教育几年,对数学教育的重要和艰难,有深切的体会。xx年,西南师大的著名代数学家陈重穆教授亲自到中小学第一线进行数学教育改革,使我十分钦佩。他提出淡化形式、注重实质的口号,一时成为国内数学界和数学教育界讨论以至争执的热点。数学的一个特点是形式化,陈重穆教授自然十分清楚。他之所以提出淡化形式,并非针对数学本身,乃是对人们认识抽象规律过程,尤其是对儿童青少年学习数学而言,因此我认为他讲得有道理。数学和数学教育是彼此联系又互相不同的学科,数学界应该更加重视数学教育的研究与实践。

张奠宙教授和宁乃庆校长主持十五国家级规划教材──《数学教育概论》的编写,当是21世纪中国数学教育的一项有意义的工作。

第一章 绪论:为什么要学习数学教育学

数学教师是一种职业,是一种需要特殊培养的专业人士。让我们来回顾一下历史。在古代,学教育的主要目的是培养大大小小的官史、僧侣和文职人员。为了将学生培养成统治者,读、写、算是最基本的。无论在古埃及、巴比伦和中国等文明古国,还是在稍后崛起的古希腊和古罗马,经世致用其所长数学都是学校启蒙教育中一个必不可少的内容。进入20世纪,各国培养教师计划中重视和加强教学法培训的倾向更加明显了,数学教育逐渐成长为一个需要具备一定特殊技能的专业。

在这本书中我们看到了几个数学教育研究的案例。第一个案例中研究者使用的是访谈法,目的是想通过访谈,比较深入地了解学生是怎样思考的,产生错误认知和差错的主要原因是什么,克服它们的有效措施是什么,等等。通过研究,希望提炼出可供教材编写人员和教师参考的建议。访谈法是研究数学教育心理学的学者在了解和分析学生思考过程时常用的一种方法。

让学生在发现和创造中学数学这是一个诱人的数学教学境界。布鲁纳认为发现法具有两个效用:一是给心灵带来愉快,二是促使能力获得迁移为了检验布鲁纳的这些看法,马鞍山市xx中学冯建国教师在初一的两个平行班级的数学课中进行了两次实验。第一次教学实验,甲班用发现法乙班用一般方法。第二次教学实验则轮换一下,乙班用发现法,甲班用一般方法。两次课的内容是连续的,一前一后依次是合并同类项和去括号。根据这两次实验得出几个结论:

(一) 布鲁纳所说的愉快是存在的,这从两次发现课举手要求回答的总人次为238,而两次一般课相应数学据为115,以及从课堂气氛等教学现现象中可以看出。

(二) 布鲁纳所说的迁移能力提高也是正确的.,这从学生在完成b组题目上的表现可以看出,两次发现课中,学生在b组得到的平均分累计为48.9,而两次一般课的相应分数仅为33。

(三) 发现法有得于对基础好、智力好的学生进行教学,但也容易产生全班成绩的两极分化。比如,在a组题目中,两次发现课得满分的总人数和30分以下的总人数依次是58人和9人,相应的一般课数据则为53人和3人。

这个研究案例采用的是轮组实验法,意在控制无关变量带来的影响,是教学研究中常用的一种实验方法。

课堂教学中语言是不可或缺的一种人际交流工具。然而,从学校的课堂教学实践看,教师的课堂教学用语似乎还难尽人意。教师课堂教学用语的现状究竟如何,学生最喜欢和最厌恶的教师课堂教学用语是什么,教师课堂教学用语在教师魅力诸方面中的地位如何,浙江方桥初中的张菊飞等老师就此进行了一番调查研究。

对学生来说,教师最大的魅力是什么?教师课堂用语在其中的地位又如何?查结果表明:学生最搬弄是非重的是教师的教学水平和教学能力,其次是优美的语言、渊博的知识、丰富的感情和热情的态度。所以,提高自己的教学水平和能力是教师的首要任务,但是,优美的语言对于学生的情感、态度等也有很大的作用。

第二章 数学课堂教学观摩与评析

数学教育学有自己的理论体系,又是一门实践性很强的学科。有人说,数学教师像一个传道者,孜孜孜不倦地向世人传播数学真理,历尽艰苦而无怨无悔;也有人说,数学教师又像一位电视节目主持人,生动活泼地把学生组织起来,进入探索数学知识的海洋;更有人说,数学教师也像一位表演艺术家,把抽象严谨的数学体系,用艺术的方式呈现出来,让学生理解数学的伟大价值,获得美的享受。由此看来,数学教学既是一门科学,也是一门艺术。观察优秀教师的课堂教学,是一种美的享受。一堂好的数学课,首先是看数学知识的掌握是否正确与适度,然后才是教学活动的呈现方式。

我国的数学课堂教学已经有比较固定的教学程序,也称为教学环节。一般的课堂教学都包括:复习思考、创设情境、探究新课、巩固反思以及小结练习等环节。实践表明,这种模式反映了传统的教师向学生传授知识和技能的倾向,在知识传授上,采用这种模式的教学总的效果是好的,也为广大数学教师所接受。缺点是容易忽视学生是学习的主人。此外,对教师组组织教学语言、设计提问有较高要求。

第三章 数学教学设计

第二章的案例可以看到,数学教学具有许多类型。它们构思不同,形式各异,可谓色彩斑斓,美不胜收。如果说,把教育学一般理论比喻为建筑学理论,那么数学教学则是一项建筑工程。一堂优秀的数学课,正如一座美轮美换的大厦,既要符合科学原理,又能令人赏心悦目。众所周知,工程需要设计,同样数学教学也需要设计。作为数学教师,只有掌握了较高的教学水平,才能更有效地组织教学

教师进行教学设计是为了达到教学活动的预期目的,减少教学中的盲目性和随意性,其最终目的是为了使学生能更高效地学习,开发学生的学习潜能,塑造学生的健全人格,以促进学生的全面发展。既然是设计,就需要思考、立意和创新。因而,数学教学设计是一个既要满足常规教学要求,又要进行个人创造的过程。数学教学的真谛是数学思维过程的教学,学生需要掌握数学知识,但更重要的是学习获得知识的思维活动过程以及所运用的数学思想和方法。

第四章 与时俱进的数学教育

数学教育研究的核心课题之一,是要把人类创立的数文明中的精华部分,以符合时候精神的方式,构建数学课程,通过教师的示范和引导,让学生理解、吸收和掌握优秀的数学。

数学是为了自身的健康,必须保持逻辑上的严密性。因此,从19世纪开始,数学进入了第三个时期:现代公理化时期。群论的出现,复数以及四元数的运用,非欧几何的诞生等等,再次证明数学本身内部的问题也在推动数学的进步,而所有这一切,都围绕着群的公理、复数和四元数的公理、欧氏几何公理而展开的。与此同时,分析学的严格化进程也在加速,随着实数系的公理化定义, 语言代替了自然描述的语言,微积分奠定在严密的基础上。 一时期的顶峰是康托提出集合论比较无限的大小,以及希尔伯特提出的形式主义的数学观,风靡世界。这种数学观认为数学只是一组相容的、独立的、完备的公理系,按照一定方式推理出来的一堆形式,与它表示的内容无关。20世纪中叶发展起来的布尔巴基学派,将现有数学知识按照最严密的方式加以梳理,构成了一个比较严密的结构主义的数学体系。

这股思潮影响了两个世纪。但是,数学毕竟不是形式。数学最丰富的源泉在于现实世界的数量关系。20世纪30年代,哥德尔证明了,希尔伯特的公理体系如果包含自然数在内,那么总存在一个命题,用公理无法判断其为真,也无法判断其为假。于是,这个公理系在形式上是不完备的,即不能自圆其说的。于是,形式主义的数学观得到了致命的批判。

第五章 数学教育的基本理论

数学教育作为一门学科,始自20世纪初,目前还不满1XX年。20xx年成立国际数学教育委员会,数学教育成为国际性的事务。但是在第二次世界大战之前,数学教育的研究只限于各国的数学教学大纲、数学教学计划等文件的交流,尚无数学教育的理论著作问世。第二次世界大战结束后,数学教育进入一个迅猛发展的时期,各种数学教育的著作大量出现。但是,真正形成数学教育理论形态的研究并不多,似乎只有弗来登塔尔和波利亚两位的工作得到比较广泛的承认。心理学家皮亚杰倡导的建构主义学说,对数学教育有很大影响。中国的双基数学教育,积累了丰富的经验。

弗赖登塔尔认为,数学来源于现实,存在于现实,并且应用于现实,而且每个学生有各自不同的数学现实。数学教师的任务之一是帮助学生构造数学现实,并在此基础上发展他们的数学现实。因此,在教学过程中,教师应该充分利用学生的认知规律,已有的生活经验和数学的实际,灵活处理教材,根据实际需要对原材料进行优化组合。把例题生活化,让学生易懂易学。通过设计与生活现实密切相关的问题,帮助学生认识到数学与生活有的密切联系,从而体会到学好数学对于我们的生活有很大的帮助,无形当中产生了学习数学的动力。这也就是弗赖登塔尔常常说的数学教育即是现实的数学教育。

波利亚对数学教育的基本看法,波利亚对于数学教育的目的、价值、方法非常关注。他认为,中小学生到底为什么要学习数学?要学什么样的数学?通过什么途径学好数学?具体一点就是,在中小学阶段,是以学数学为主呢,还是以学如何用数学为主呢?这一点必须弄清楚。在他看来,中学数学教育的根本目的就是教会年轻人思考。这种思考既是有目的思考,产生式的思考,也包括形式的和非形式的思维。教师要努力做的就是教学学生证明问题,甚至也教他们猜想问题,启发学生自己发现解法,从而从根本上提高学生的解题能力。当然,他也强调数学教育中培养学生的兴趣、好奇心、毅力、意志、情感体验等非智力品质的重要性。因为,要学会解题,要成为解题能手,是要经过大量的解题实践,是要付出艰辛的努力,需要有一定的意志品质的,并不是说在玩就能学会解题,要学好数学毕竟不是一件轻轻松松的事情。

波利亚强调,要成为一个好的解题目者,如果头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西,学东西的最途径是亲自去发现它,最富有成效的学习是学生自己去探索、去发现。只有学习者自己的思维活动起来了,他在学习中才会寻求到欢乐。有了成功的体验,他对数学知识本身才可能产生内在的兴趣。

另外,波利亚从教师的角度出发,根据自己的实践经验,立足于艺术形式对人的影响和作用方面来认识教学,并坚持说教学是一门艺术他把教学比作舞台艺术,以说明教师的教态对学生起着潜移默化的影响和熏陶作用;他把教学与音乐、诗歌、轶事比较,以说明教师的语言和所表达的内容对学生能够产生圈套的吸引力,能引起学生的兴趣和好奇心。当然,关于教学是否是科学这一点,他度没有正面回答。他更多的是,以一个教育家自身的教学实践和经验,以一个数学家无意识地遵从、运用科学规律来说明教学过程本身应该遵循一些规律性的东西,并尤其强调兴趣对学生学习数学的重要性。

第六章 数学教育的一些基本课题

为什么要学习数学?为什么学那么多的数学?为什么世界各国都把本国语文和数学作为最重要学习科目?这就要涉及数学教育目标的确定。

数学教学的目的是:使学生牢固地掌握代数、颊几何、立体几何、三角和平面解析几何的基础知识,培养学生正确而且迅速的计算能力,逻辑推理能力和窨想像能力,以适应参加生产劳动和进一步学习的需要。

数学函数心得体会 篇29

谈起高考,很多人是谈虎色变。曾经的我也是,走过高考再回首,高三的生活就像一粒粒珍珠从指尖滑过。淡淡的其实很简单。

最近老有学弟学妹说自己不想学习了,越学越糟。我想说静下来,不要浮躁。总的来说,高考首先要摆好心态,不要被外界的环境打扰。高考前的考试只是用来检测你自己是掌握的情况,问题暴露得越早越好,不要因为一两次的考试失败而乱自己的阵脚。有时焦虑不安,不要太敏感,用坦然的心态对自己说:“就让它焦虑吧,反正我已经豁出去了!”

很多人说高考难,不仅是知识掌握的方面,还有心理承受方面。是的高三生活似咖啡,第一口的感觉总比最后一口好,而恰恰是最后一口余味无穷,这正如高三,始入高三,干劲十足,热情和冲动都强烈似火;而最后精疲力尽,温度也降了不少,真是激情过后的疲惫,行百里者半九十的心情。可要牢记:弓尚在,坚持、坚持、坚持到最后是彩虹。我喜欢一句话:高考如果不难,如果没有压力,还要我们干什么!人生能有几回搏,此时不搏更待何时!

再说考试,就比如数学吧,考纲上就那么些考点,把自己不会的不清楚的多看看,找些题练练。把解每种题的方法做到如数家珍,融会贯通成为自己的知识体系。我以前就喜欢拿着考纲,看一个知识点然后回忆出改知识点在哪考过,用的什么方法,还有什么方法。经常这样练练,体系就自然形成了。要不然满脑子都是浆糊了。再者就是要权衡考点,有些考点就出一个填空题,就不必要花太多时间。向量的数量积那块是三星级考点,就得多做题。把各大市的模拟题拿出来,把有关这个知识点的题目找出来,总结分析考得这个知识点的那个具体方面,用的哪些方法,这真的很重要。像等差数列和等比数列,这类题的方法性很强,一定要多掌握几种方法。有些求和公式一定要记忆。记忆并不是说你不理解,而是在考场上拿出来直接用多好啊,省得自己去推导,浪费时间。

最后,愿我的高三复读同学考到好成绩。所有高考学子,加油!

【心得体会】相关文章:

2025大学生党课感言(推荐33篇)01-20

2025劳动教育课程的心得体会(热门30篇)01-20

2025最新精选有关大一军训心得体会范文(热门31篇)01-20

军训第四天心得体会参考范例(精选30篇)01-20

初中军训心得600字范文(通用33篇)01-20

2025最新精选关于大一军训心得体会文章【精选32篇】01-20

高中军训心得体会400字范文(合集29篇)01-20

初一军训的心得范文550字汇编22篇01-20

高一新生军训心得400字【推荐28篇】01-20

初一军训的心得作文600字【推荐20篇】01-20